
RL-TR-94-212 
Final Technical Report 
December 1994 

MISSION CRITICAL FAILURE EFFECTS 
ANALYSIS USING QUANTITATIVE 
TECHNIQUES 

Research Triangle Institute 

Mark Royals, Rahul Kapoor, and Nick Kanopoulos 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

mom i6f 
Rome Laboratory 

Air Force Materiel Command 
Griff iss Air Force Base, New York 



This report has been reviewed by the Rome Laboratory Public Affairs Office 
(PA) and is releasable to the National Technical Information Service (NTIS). At 
NTIS it will be releasable to the general public, including foreign nations. 

RL-TR-94-212 has been reviewed and is approved for publication. 

APPROVED: 

WARREN H. DEBANY, JR., Ph.D., P.E. 
Project Engineer 

FOR THE COMMANDER: 
^<^U^v\ . DctA^ 

JOHN J. BART 
Chief Scientist, Reliability Sciences 
Electromagnetics & Reliability Directorate 

If your address has changed or if you wish to be removed from the Rome Laboratory 
mailing list, or if the addressee is no longer employed by your organization, 
please notify RL (  ERDA) Griffiss AFB NY 13441.  This will assist us in maintaining 
a current mailing list. 

Do not return copies of this report unless contractual obligations or notices on a 
specific document require that it be returned. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Put*: report*« burden for this eotaction of Hormatoi Is esrjriated to average 1 hour per response, hdudng the time for reviewing Instructor sesrchhg existing dsts soLras. 
gathering andmaHartigthedrfaneeded, andcorrpleoTgsndrevlewlrigthecolectoiof Wormaton Sendcorr^^ 
cdectoi of ^formation, hdudng suggestions for redudng this rxra^ to WiHhlngJon Hesoouarters Services, Dlredcfste 
Davh Highway, Suta 1204, Arsrgton, VA 22202-4302, and to the OfUca of Management and Budget. Paperwork ReAjcto Prolea (0704<]18q, W   

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 

December 1994 

a REPORT TYPE AND DATES COVERED 

Final Feb  93 -  Feb  94 

4. TITLE AND SUBTITLE 

MISSION CRITICAL FAILURE EFFECTS ANALYSIS "USING 
QUANTITATIVE TECHNIQUES    '  

5. FUNDING NUMBERS 

6. AUTHOR(S) 

Mark Royals, Rahul Kapoor, and Nick Kanopoulos 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES) 
Research Triangle Institute 
Center for Digital Systems Engineering 
P.O. Box 12194 
Research Triangle Park NC 27709 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES) 
Rome Laboratory (ERDA) 
525 Brooks Rd 
Griffiss AFB NY 13441-4505 

c - F30602- ■93- -C- -0009 
PE - 62702F 
PR - 2338 
TA 
WU 

— 01 
PM 

a PERFORMING ORGANIZATION 
REPORT NUMBER 

N/A 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

RL-TR-94-212 

11. SUPPLEMENTARY NOTES 

Rome Laboratory Project Engineer: 
12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Warren H. Debanv. Jr./ERDA/(3151 330-2047 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT(MaKimxTi OTwords) 

This report addresses the problem of assessing the criticality of faults in a large 
digital system.  In particular, it addresses simulation-based methods for determining 
the effectiveness of built-in-^-test.  The approach is based on automated fault 
injection in a VHDL model of the system, and statistical analysis of the resulting 
behavior of the system.  The behavioral entities of the VHDL model would correspond 
to Line Replaceable Units (LRUs) or Line Replaceable Modules (LRMs).  This report 
provides the top level design requirements and rationale for the detailed design of 
this capability. 

14. SUBJECT TERMS 
Fault effects, Criticality analysis, Fault injection, 
Built-in-test, System simulation, Design tradeoffs (see reverse) 

17. SECURITYCLASSIFICATION 

IED 

1a SECURITY CLASSIFICATION 
OF THIS PAGE 
UNCLASSIFIED 

19. SECURITYCLASSIFICATION 
OF ABSTRACT 
UNCLASSIFIED 

15. NUMBER OF PAGES 
106 

16. PRICE CODE 

20. UMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89) 
Prescrbed by ANSI Std Z39-1 a 
298-102 



Contents 

Accesion For 

NTIS    CRA&I 
DTIC    TAB 
Unannounced 
Justification 

D 

By   
Distribution/ 

Availability Codes 

Dist 

m 
Avail and/or 

Special 

1 INTRODUCTION 

1.1 Technical Rationale  

1.2 Motivation  

1.3 Technical Approach  5 

1.4 Modeling  8 

1.5 About this Report      9 

2 A PROPOSED TOOL STRUCTURE 12 

2.1 Tool Outline  12 

2.2 Tool Structure      14 

2.2.1 Kernel  14 

2.2.2 Fault Injector  16 

2.2.3 Criticality Detector  17 

2.2.4 Built-in Test Evaluation  17 

2.2.5 Interactions:  18 

3 FAULT INJECTION 19 

3.1 Objective      19 

3.2 Proposed Fault Injection Mechanism  19 

3.3 Some Experimental Results      27 

3.3.1     Statistical Models  29 

3.4 Benefits of the Proposed Approach  31 

3.5 Test Bench Generator      31 

3.5.1 The Fault Selection and Injection Test Bench      33 

3.5.2 The Fault Simulation Bench  36 

4 CRITICALITY ANALYSIS 38 

4.1 Determination of Fault-Effect Criticality  38 

4.2 Methods for Criticality Analysis  40 



4.3 Quantized Specifications   .  .  .  41 

4.4 System Attributes Needed for Performing Criticality Analysis      44 

4.5 Attribute Association  46 

4.6 How Simulation Output Can Contribute to Theoretical Evaluation  48 

4.7 Summary      49 

5 BIT EVALUATION 53 

5.1 BIT Evaluation Approach  53 

5.2 BIT Measures  55 

5.3 Recommended BIT Insertion Techniques  60 

5.3.1     Survey of Automatic BIT Insertion Techniques  60 

5.4 Tracing Critical Faults  66 

6 TOOLS 68 

6.1 The Kernel      69 

6.2 Queries  72 

6.3 Simulator  77 

6.4 Fault Injector  79 

6.5 Criticality Detector  §0 

6.6 BIT Evaluation Tool  82 

6.7 Online Help and Tutorial  §3 

6.7.1 Level 1  33 

6.7.2 Level 2  85 

6.8 Enhancements and Options, User Interface Manual  85 

References gg 

ii 



List of Figures 

1.1 The Basic Approach      

1.2 Hierarchical Structure of a System  10 

2.1 The Tool Structure  13 

2.2 The Concept of Kernel  15 

3.1 Fault Injection Model  24 

3.2 Statistical Fault Generation  28 

3.3 Statistical Fault Generation  30 

3.4 User Specified Fault Model  32 

4.1 Basic Methodology  39 

4.2 Criticality Analysis Methods  41 

4.3 Fields for Specification  43 

4.4 Sampling Period Can Vary  44 

4.5 Attributes to be Specified for Criticality Analysis  47 

4.6 Criticality Detector as a Comparator  50 

5.1 The BIT Evaluation Tool  56 

5.2 The BIT Evaluation Tool with Multiple Performance Measures  61 

5.3 TIGER: Testability Insertion Guidance Tool  63 

5.4 Tracing a Critical Fault  66 

6.1 Graphical Interface Incorporating the Proposed Tool Set in the Design Cycle 70 

6.2 The Design Cycle  71 

6.3 Parts in Fault Injector  79 

6.4 Criticality Detector  81 

Xll 



List of Tables 

3.1    Initial File Format for Fault List       34 

3.2    Format for Fault List in Single Fault Mode       35 

3.3    Format for Fault List in Multiple Fault Mode           36 

4.1    Default Values for Signal Attributes       48 

4.2    File Format for Fault-Free System Logfile       51 

4.3    File Format for Faulty System Logfiles      51 

5.1    File Format for BIT Logfiles      54 

6.1    Recommended Set of Queries    .      73 

6.2    File Format for BIT Logfiles       83 
iv 



List of Recommended Tools 

QuickSimll is a registered trademark of Mentor Graphics Corporation, 8005 S.W. Boeck- 

man Road, Wilsonville, Oregon 97070. 

DesignArchitect is a registered trademark of Mentor Graphics Corporation, 8005 S.W. 

Boeckman Road, Wilsonville, Oregon 97070. 

Falcon Framework is a registered trademark of Mentor Graphics Corporation, 8005 S.W. 

Boeckman Road, Wilsonville, Oregon 97070. 

AMPLE is a registered trademark of Mentor Graphics Corporation, 8005 S.W. Boeckman 

Road, Wilsonville, Oregon 97070. 

DesignManager is a registered trademark of Mentor Graphics Corporation, 8005 S.W. 

Boeckman Road, Wilsonville, Oregon 97070. 

Disclaimer: The mentioning of commercial tools in this report does not constitute an 
endorsement by the Air Force for those tools. These tools are recommended by the authors 
of this report because they are determined to be suitable for the proposed tool environment. 



Acknowledgements 

This report was prepared for the Rome Laboratory (RL) under Contract No. F30602- 
93-C-0009. The work was performed at the Research Triangle Institute (RTI) by Mark 
Royals, Rahul Kapoor, Nick Kanopoulos (Project Manager), report editing performed by 
Ingrid Agolia. The technical aspects of this project were monitored by Dr. Warren Debany 
(RL) who also provided valuable technical direction to the project team. 

vx 



1.   INTRODUCTION 

The design specifications for modern DoD systems include test and diagnostic requirements 

for on-line and off-line detection of 100% of mission-critical faults. However, the definition 

of mission-critical faults (i.e., faults that cause loss of life, property, and mission abort) 

describes only the effect of their manifestation on system operation at the overall weapon 

system level. For a system developer to comply with test and diagnostic requirements, it 

is necessary to identify quantitatively the faults in system operation, at different levels of 

system hierarchy (i.e., component, board, module, subsystem), that can cause the effect 

described by the "mission-critical fault" definition. Furthermore, the same capability is 

required by the Government for auditing system developer compliance with requirements. 

The identification of mission-critical faults in a quantitative manner will allow the system 

designer to properly allocate test and diagnostic resources early in the design phase so that 

a required maintenance approach can be effectively implemented. The capability of fault 

injection, while the system is performing its operation, will allow the designer to evaluate 

and demonstrate the effectiveness of system-level BIT and fault-tolerance features. These 

capabilities do not exist today as part of a CAD environment, however, this project outlines 

the requirements for such a system. These capabilities are very much needed by weapon 

system developers who are using ad-hoc approaches to perform some of the cited functions 

and resort to extensive, costly field testing to evaluate the effectiveness of BIT and fault- 

tolerance features. 

For a new tool development, it is important to consider possible interfaces to existing 

tools that can be used synergistically to aid the designer in different aspects of the system 

design process. 

Tool development will be guided by user needs. Tool effectiveness in performing intended 

functions will be evaluated using a real-life system as a benchmark. Close interaction between 
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the tool development team and a weapon system development team will guarantee relevance 

of tool output in making decisions for the design of near-future systems. Furthermore, close 

interaction with the end-user will insure an interface compatible with widely acceptable 

design practices and standards. This, in turn, will facilitate the transfer of the developed 

technology to weapon system developers. 

1.1.   Technical Rationale 

Modern DoD electronic systems rely heavily on advanced technology to achieve mission ob- 

jectives while maintaining high levels of availability and survivability. To accomplish these 

features, the design specifications of these systems include stringent requirements addressing 

fault tolerance, integrated diagnostics, and Built-in Test (BIT) capabilities. For example, 

the requirements for continuous BIT in the INEWS system (i.e., an electronic warfare sys- 

tem to be used by several aircraft) read: "C-BIT shall detect all mission-critical faults, 

be non-interfering, have a false alarm rate less than 1%, enable reconfiguration, and report 

mission-critical and non-mission-critical faults to the air crew via a resource manager. Faults 

reported to the air crew shall be identified as being either mission-critical or non-critical". 

The major issues that have to be resolved before designing according to this specification 

are the following: 

1. Identification of mission-critical faults in a quantitative manner. 

2. Test resource allocation for implementing BIT and fault tolerance for detection and 

recovery of faults, system reconfiguration, and air crew reporting. 

3. Evaluation of the capability of the BIT to perform its function at the level required by 

the specification. 

The objective of the work performed in this project was to develop a methodology 

whereby mission-critical faults can be identified for a given application through the use 
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of simulation, and to define a CAD tool environment that can implement this methodology. 

1.2.   Motivation 

A large number of techniques have been developed in the past for performing Failure Mode 

Effects Analysis (FMEA). Traditional techniques initially developed are: the Tabular ap- 

proach [1], the Matrix techniques [2,3] and the Bayesian approach [4,5]. The tabular tech- 

nique is a "worksheet" approach which provides a simple inductive methodology, viable at 

any design level. Supplementary techniques which are based on tabular FMEA output have 

also been developed. These are the failure combination method [6] which explores the effects 

of multiple, and externally induced failures, and the Hardware/Software interface analysis 

[7]. 

The matrix technique provides a grided-plot format of the effects of failures in inputs, 

outputs, connections, and parts, at the lower level of the design. In this technique, the lower 

levels of analysis propagate to the upper levels following a bottom-up approach. A more 

advanced approach that is based on matrix techniques calculates probabilities of failures, in 

addition to the failure effects. This technique was automated in [8,9]. 

The Bayesian FMEA is a statistical approach that lends itself to automation. The pri- 

mary inputs of the Bayesian FMEA are a reliability table and a criticality table, which relate 

what component(s) are likely to have failed given a system output failure. 

Another major category of FMEA techniques is based on the fault-tree analysis [10,11]. 

In fault-tree analysis a specific undesirable system failure is defined, and a fault-tree of lower- 

level faults that caused the top-level failure is constructed using Boolean algebra. Fault-tree 

analysis is suitable for the analysis of fault-tolerant designs. Supplementary techniques based 

on fault-trees include the Sneak Circuit Analysis [12,13], System Phase Modeling [14], and 

the Event-Circuit Analysis [15]. 
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Finally, the last class of existing FMEA methods includes techniques that consist of 

a combination of the previously mentioned approaches. One example of these techniques 

is the Tabular Systems Reliability Analysis [16] which combines aspects of tabular FMEA, 

fault-tree analysis, and Markov chain theory. This technique is well suited for evaluation of 

fault-tolerant distributed systems. Another example is the Integrated Critical Path Analysis 

[17], which examines failures that are caused by hardware/software interfaces. This technique 

combines aspects of tabular FMEA, fault-tree analysis, and sneak circuit analysis. 

The existing FMEA methods can be divided into two major classes: The first class, which 

includes the most of the traditional FMEA techniques (i.e., tabular, matrix, fault trees, etc.), 

requires a significant involvement from a prospective user in terms of detailed knowledge of 

the examined system and the effects of failures in all the system components. The second 

class consists of the techniques that use analysis methods. These techniques require less 

user involvement, but they are highly specialized and demand large amounts of computing 

resources. Finally, the automation of such techniques is not considered to be feasible [18]. 

A common characteristic of all these techniques is their basis of analysis using first-order 

dependencies, topological information for the system, and qualitative information about 

failure modes. The detail involved in performing traditional FMEA techniques also causes 

the analysis to be overly time-consuming and costly. Failure effects analyses also tend to 

be unattractive from a user's point of view because typically a human must systematically 

categorize all the failure modes of the system. The analysis methods that are used to assess 

systems which depend on software activity is a limiting factor for all these techniques. The 

performance of these methods deteriorates even further when they are applied to complex 

computer systems. Because of all these problems, the use of FMEA techniques has been 

reduced to fulfilling contractual or quality assurance obligations [19]. 

In addition, the analysis of failure effects in preliminary design stages, where the system 

architecture has not been finalized, requires a high-level functional approach.  Automation 
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tools capable of performing this type of analysis do not exist at this time. Moreover, the 

criticality of fault effects is mission dependent, but is not considered by any of the traditional 

FMEA approaches. 

The proposed project will develop a method for determining quantitatively the effect 

of component failures to system operation by simulating the system architecture with the 

application code. The criticality of the fault effects will be determined by comparing their 

magnitude to user-specified thresholds defining mission-critical system operation margins. 

The advantage of the proposed method is that it provides results that relate the criticality 

of fault effects to a mission, thus allowing the user to design and evaluate system features 

such as BIT and fault tolerance, based on their contribution to fulfilling system mission 

requirements. 

Finally, the automation of the proposed method with prototype CAD tools and their 

interface with other existing tools will create a unique design environment where the user can 

evaluate the performance, the testability, and the reconfigurability of a system, in addition 

to the FMEA analysis. 

1.3.   Technical Approach 

To meet the objectives of the program, the work can be described by the following tasks: 

1. Develop an overall methodology for performing meaningful fault injection, simulation 

of a system architecture, and identification of the faults which are deemed mission- 

critical. 

2. Develop a technique to inject faults within a system in a statistical manner which 

adequately maps observed failure modes to faulty components. The user has the choice 

of injecting particular faults, which occur based on an assumed probability distribution 

function, and they can be injected at any interface between components. 

p. 5 



3. Describe a methodology for comparing the response of the faulty system to the fault- 

free case and determine the criticality of the error response based on user-supplied 

specifications. Here the issue is the development of a framework for the user to specify 

the criticality of faults and for a tool to use this specification in making decisions. 

4. Develop methods for evaluating the effectiveness of Built-in Test schemes which have 

been implemented within the overall design. This is the stage where a complete simu- 

lation model is necessary so that a tool can evaluate a chosen BIT scheme. 

5. Define a set of requirements for a proposed design tool set which can implement the 

methodology steps described above. These tools are parts of an overall CAD framework 

that uses the existing tools in the framework to implement some of the functions 

outlined, and is pointed to wherever possible. There is a need to develop software to 

implement parts of the methodology which find no implementation in form of existing 

tools, and also for the interface between various tools. 

The block diagram in Figure 1.1 outlines the approach used in this study: 

This figure illustrates how the system designer may design a system using a system 

component library based on VHDL code for different modules. After such a description is 

completed, the designer can simulate the circuit until satisfied with the functionality. At this 

stage the designer may have the first prototype model with possibly some BIST circuitry 

included. The next step is to identify mission-critical faults, and to assess if the used BIST 

circuitry is able to trap the identified mission-critical faults. This can be accomplished by 

injecting faults in the circuit. The injected faults are a subset of all possible faults, and 

are designed to identify the mission-critical faults. Once such faults have been identified, it 

should be seen whether all such faults are being flagged off by the BIST circuitry. If not, the 

BIST scheme needs to be refined or its placement needs to be modified. To aid in selecting 

an appropriate subset of the total fault set failure rate, reliability data may be required, and 
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a knowledge base for user-defined failure modes may be of great assistance. 

After the VHDL simulation of the faulty circuit and the comparison of its responses 

with those of the fault-free system, a criticality report can be prepared and used for further 

analysis. 

The steps followed in developing the technical approach depicted in the figure are the 

following: 

• 

• 

Research available databases and the open literature to determine the current state- 

of-the-art techniques for performing one or more of the tasks listed above. 

Because of the emergence of VHDL as a standard method of describing the behav- 

ior/structure of a digital design, the proposed approach should leverage the wide vari- 

ety of CAE tools which have been implemented to support the use of VHDL. 

• Utilize a knowledge base concerning likely failure modes and their error manifestations 

for each of the described VHDL entities. Failure rates for each entity should also be 

provided from either external sources or best-guess estimates. 

• User-controlled statistical parameters based on various probabilistic distribution func- 

tions can be utilized to govern the severeness and frequency of the failure injection 

process. 

• Develop techniques to quantitatively evaluate the faulty simulation response with the 

fault-free response based on user-supplied threshold characteristics. 

1.4.   Modeling 

As emphasized above, a model for the system to be evaluated is needed for quantitative fault 

model and effect analysis. The model should be expressed in VHDL, and certain attributes 

should characterize the model as discussed below: 
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• There should be a general way for developing a model for most of the systems of interest 

(i.e., the designer must be able to insert both design changes and BIT circuitry with 

relative ease). 

• The model should be hierarchical in nature so that the designer can check or modify 

the design at any level. Figure 1.2 shows how a system (the largest rectangle) can 

be visualized as consisting of several subsystems (smaller rectangles inside the largest 

one). The system and each of the subsystems include certain attributes which help 

describe the system better. Such attributes are shown by ellipses in the figure. This 

model is especially true of VHDL descriptions of systems. This is because the VHDL 

itself describes systems in a hierarchical manner. The entities can include other entities 

in a hierarchical manner. 

• Well-defined structure or quantized fields for ease in handling the data provided by the 

user. This also helps the user convey requirements to the tool easily. 

• Flexible in the sense that it can be used at any level of design abstraction, (i.e., at the 

behavioral level, structural level, etc.). 

1.5.   About this Report 

This report initially gives the reader a general idea of the functionality and the structure of 

a proposed tool set for performing mission-critical failure effects analysis, with this chapter 

as the introduction and the next chapter describing the general structure of the tool set and 

how various tools fit together. 

The individual modules of the tool set are then discussed in detail, including their func- 

tion, emphasising how the decisions were made, and some alternative options which may be 

functionally viable for the objectives of this project. 
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## THE ELLIPSES DENOTE THE FIELDS. 

## THE RECTANGLES ARE COMPONENTS AT DIFFERENT 
LEVELS   (e.g., SYSTEM, SUBSYSTEM, COMPONENTS). 

Figure 1.2. Hierarchical Structure of a System 
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After conceptually explaining each tool, the issue of implementation is addressed. Various 

details; such as the interfacing tools and their requirements, the suggested tool set, and how 

each fits in the general framework, are discussed. 
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2.   A PROPOSED TOOL STRUCTURE 

2.1.  Tool Outline 

The proposed tool consists of three parts as shown in Figure 2.1 These parts perform fault 

generation and injection, criticality analysis and BIT evaluation, respectively. In Figure 2.2 

the dependencies and dataflow have been deliberately omitted for the sake of brevity. The 

emphasis is on clarifying the high-level concept of the tool function. The tool requirements 

and structure can be summarized as follows: 

Functional Requirements: 

The input to the tool will be the VHDL model of the application system which the designer 

is simulating. While simulating the application, the designer has certain specifications about 

the system behavior which need to be met. This implies that the designer can define a certain 

deviation of the system from the intended "normal" behavior, which may be considered 

non-critical to the system mission. The tool is required to check the effect of failures on 

the intended behavior of the system, and more specifically, if failures are mission-critical 

according to the user specified criterion. 

Inputs to the Tool: 

From the requirements of this tool, it is simple to see that the user has to specify the 

application code of the application to the tool. This code must be in VHDL, and the entities 

used by the designer have some of the attributes which the designer must specify to aid the 

tool in analyzing the criticality of failure (an example of these attributes can be whether the 

component being modeled by the entity description in VHDL is synchronous or not). The 

description of these attributes is deferred to the chapter describing the criticality tool. 

Another set of inputs expected by the tool are the specifications of criticality. Through 

these specifications, the designer specifies the tolerance levels of the system. These tolerance 

levels are actually specified in terms of the outputs of the system. For example, the designer 
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might specify that if a particular output (say x) differs from its fault-free expected value 

by 10 percent, then the criticality is to be flagged. In effect, the designer specifies what is 

considered to be mission-critical in terms of the quantitative effect of faults. 

The third input (optional) is the reliability data of various components being used to 

model the system. These data indicate the probability of failure of these components, and 

can be especially helpful in the fault injection stage. If these data are not present, then equal 

probability of failure is assumed for each component. 

Output of the Tool: 

The tool will identify all the mission-critical faults out of those faults which were selected 

for simulation (this number can be arbitrarily large, limited only by simulation time and 

available computing resources). 

The tool will also check the efficacy of the BIT (Built-in test) approach being used by 

the designer in terms of its capability in detecting mission-critical faults. 

2.2.   Tool Structure 

First, a brief description of the structure of the tool components is given along with their 

interactions. 

2.2.1.   Kernel 

The tool has three individual components with a simple dataflow, so that each component 

can be used alone. Despite this fact, there is a need for the central design manager which 

can control the dataflow and act as an interface between the user (who is designing the 

application) and the tool. This interface can be called the Kernel. The kernel can be 

thought of as the common database through which all the ug different tools can talk to each 

other and with the user. Such a view is presented in Figure 2.2. 
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KERNEL AS AN INTERFACE 

Figure 2.2. The Concept of Kernel 
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In this figure, two new elements are introduced. They are the VHDL library from which 

the designer can choose components, and the other user specifications which may be used by 

the kernel and/or tools. As an example, the user may want to specify whether the simulation 

has to be carried out in the Max, Min or Typical mode. Other things which can be specified 

by means of the kernel may be: 

• Whether warnings are to be flagged. 

• Should the attributes of the children be carried to the parent (i.e., inheriting attributes 

from the components). 

2.2.2.   Fault Injector 

Methodologies for determining, in a quantitative fashion, the effects of faults at different 

levels of the system hierarchy, as far as mission requirements is concerned, are discussed 

here. This will be achieved through a simulation approach whose applicability will depend 

on the design level. Techniques that generate hardware failures in a statistical manner 

and map these failures to the different levels of the system hierarchy are a part of the total 

methodology. The statistical properties of the failures and the mapping could vary depending 

upon the application task and the operating environment of the system. The fault injector 

will perform the following functions: 

• Parse the input VHDL description of the design and create superentities from the 

VHDL entities to do the fault injection with stuck-at fault model. 

• Find which faults to simulate depending on user specifications and component relia- 

bility data. 

• Direct the simulation. 
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• Should be compatible with a fault simulator. 

Dependencies of the Fault Injector: The tool function depends on the component 

reliability database and on the statistical properties of the particular fault(s) the user wants 

to simulate. 

2.2.3. Criticality Detector 

The function of the tool is to determine the criticality of the effects of the injected faults. 

Based on simulation results, the quantitative effects of the faults on the system operation can 

be compared to user-specifications indicating what is considered a critical operation margin. 

This function of the tool will be performed using the following two steps: 

• After getting inputs from the criticality specifications and the fault injector, the tool 

compares the obtained output with the fault-free expected output. Criticality is de- 

termined based on the error introduced by a fault versus an error margin that may be 

acceptable to the user based on the criticality specification. 

• If critical errors are detected, they are logged along with warnings which are issued for 

potentially critical faults. 

Dependencies of the Criticality Detector: The tool function depends on simulator 

output, fault injector, and the user-specified criticality parameters. 

2.2.4. Built-in Test Evaluation 

Procedures for evaluating the effectiveness of BIT schemes when the system is executing 

application code under faulty conditions. 
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• Define BIT counters at each of the BIT monitoring points. These counters keep count 

of various mission-critical and potentially critical faults in the system. 

• Define two global counters, one for critical faults and the other for non-critical faults. 

• After the simulation, observe the values of BIT counters to see if all critical errors have 

been detected. 

After the simulation pass concludes (or upon first detection of the criticality of the fault), 

the values in the error counters at the BIT monitoring points can be added to one of two 

global counters for each location. These two global counters keep a cumulative tally of the 

error counts for the faults deemed critical, and for those that are found to be non-critical. 

After all of the target faults have been injected and simulated, the global counters can be 

used to order the candidate BIT sites in terms of their efficiency in detecting the faults 

deemed mission-critical. The non-critical faults have their own set of error counters which 

may provide useful information to the designer about the testability of the design, and 

provide feedback as to where he may want to put testpoints for non-BIT tests. 

Dependencies of the BIST Evaluator: Depends on simulator output and output 

from criticality detector. 

2.2.5.   Interactions: 

The interactions are fully explored in the chapter on tool implementation. A description of 

the files produced and used by each tool is given. 
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3.   FAULT INJECTION 

3.1. Objective 

One of the most important components of the tool system described in Chapter 2 is the fault 

injector, which may be based on fault injection techniques described in this section. The 

objective of the fault injection is as follows: 

Develops a technique that generates hardware failures in a statistical manner, and maps 

these failures to the different levels of the system hierarchy. The statistical properties of 

the failures and the mapping could vary depending upon the application task and operating 

environment. 

3.2. Proposed Fault Injection Mechanism 

Based on the failure probability of a component (which can be computed from the MIL- 

STD-217E data or estimated by the user), traditional FMEA techniques identify and analyze 

failure effects using primarily a topological model of the system and first-order dependencies 

among the components on the level of design hierarchy considered. We propose to extend 

this approach and map it to our failure injector mechanism such that a simulation approach 

can be utilized to determine the quantitative effect of the injected fault. 

Whether or not the system is defined at a piece-part level of detail or at a higher level 

of abstraction, the failure injection method must be applicable at all of these levels. Our 

approach is to create a fault table for the VHDL-described system containing all of the 

output ports of all entities used in the functional system. This table can be created by 

parsing the VHDL description of the system and storing the output ports associated with 

each individual entity within a table. These entries need to be classified according to the 

signal type (e.g., whether they are single bits, multiple bit buses, integer representations 
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of buses, enumerated types, etc.) because in VHDL, description signals can be of different 

types. The next problem is to choose an appropriate fault model. Although some work has 

been done in defining higher-level fault models based on a VHDL behavioral description [81], 

it will be difficult to apply these fault models in a consistent manner. Furthermore, these 

models may be of questionable value for our purpose, although for test generation purposes 

they may be acceptable. Thus, we propose that at this time, the fault models be limited to 

the following: 

• Pin stuck-at values 

• Bus at wrong value 

We propose that a weighting scheme be applied to the fault population in order to 

prioritize the fault injection process for simulation and analysis. We have identified several 

possible factors which can be assigned numerical quantities, and can thus be used as weights. 

In the following discussion, the objective is to find the weight Wi for each fault in the fault 

population of the system. These weights are found as follows: 

1. Failure rate A - The failure rate of a VHDL-described component can be used to 

identify which components are the most likely to fail within the specified mission time. 

These reliability data can be extracted from known piece-part reliability databases 

such as those found in MIL-HDBK-217E, or any other known field data sources. These 

databases associate a probability of failure with each component, say A,-. The value A; 

is available for each component in the system, and from these values a weighting factor 

is obtained. This weighting factor is applied to all of the applicable failure modes for 

the specified component (e.g., all failure modes associated with a 74181 ALU would be 

weighted by the probability that this component will fail in the overall system). The 

actual weighting factor for the failure modes associated with component i is found as: 
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n 

where n is the total number of components in the system model. Note that the failure 

modes are the ways in which the specified component can fail, and thus correspond to 

the potential faults. Our concern is to find the likelihood of these failure modes. Also, 

it is noteworthy that the Ats must be expressed in the same units. So after applying 

this factor, all the failure modes of a specified component have the same weight, u;,-. 

2. Failure mode probability- Given that component i fails, some reliability databases 

may contain a conditional probability based on the applicable failure modes of the 

component. For example, if the 74181 ALU is selected for fault injection, then there 

may be conditional probabilities assigned to its individual failure modes. As an exam- 

ple, the probability that a failure in the ALU results from an error on the Cout pin 

may be 0.1, while 90 percent of the observed failures for the ALU result from the 4-bit 

output bus. Obviously such probabilities are of direct use to us. Assuming that for a 

specified component the weight as found in the previous step (from the A,-s) was W{. 

Then if we also have the failure mode probabilities for it, say /?;, the weight Wi for this 

mode is further modified, i.e., 

w'i = Wi * ßi 

Here w\ is the new weight for the failure mode (or the fault). For the purpose of this 

report we are interested only in stuck-at faults. 

3. Fanout of a signal may be weighted accordingly. If an output port of a component 

fans out to more than one location, the effects of a failure on that output port are likely 

to affect more than one destination port.   Consequently, any faults injected on that 
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port will propagate to more than one unit and will be more likely to result in a critical 

error (since the multiplicity of faults may occur). A rough guess for an appropriate 

weighting factor would be a factor of two for every fanout point (i.e., if a signal has a 

fanout of three, then the weight is 23_1 = 4). 

4. Observability - One factor which could be used as a negative weight would be the 

observability of the outputs of a given component. This score should be used only as a 

small weighting factor. Its purpose would be merely to give a higher priority to output 

ports which are deeply embedded in a design where the fault effects might be difficult 

to detect. 

5. Control/datapath functions - A higher weighting factor may be desirable for control- 

oriented and/or state machine functions rather than datapath-oriented faults. Because 

the likelihood of the system being in an incorrect state when a critical processing cycle 

is required is more critical than a small miscalculation in the datapath, a higher pri- 

ority may be wanted for these function types. As a default, these are the faults which 

might get the highest priority of all possible faults. 

After creating the necessary weighting factors and applying them to the fault occurrence 

sites, an ordered list of these sites will be identified. Some of the properties of the fault 

injection should be: 

• Faults can be injected based on user-defined triggering conditions. 

• Bus-transfer faults can be injected based on the functional difference fault model. 

• Interconnect-level faults can be modeled using stuck-at or stuck-opposite values. 

• Development of an error tracing mechanism would allow the error effects to be traced 

through the system, thereby allowing for the identification of potential BIT locations 
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and the identification of equivalent faults which can be removed from the list of failure 

modes. 

Two types of error assumptions should be used to adequately model system failures: 

1. Faults occurring in the interconnect between two or more components (or between a 

primary I/O and a component) 

2. Faults occurring within a design entity which may result in more than one error being 

present at the entity's output 

Faults will be injected by modulating the output data being passed through the ports of 

an entity and may be assumed to be permanent. 

The system will first be simulated within the VHDL simulation environment in order 

to determine the fault-free response of the system using the specified input vectors and/or 

application code running on the system test data. Because we are interested in determining 

the criticality of the system response, the simulation response for each output must be saved 

for future comparison with the responses of the faulty system. Furthermore, because of the 

BIT evaluation and recommendation facility, it will be necessary for the designer to identify 

the candidate nodes for BIT resource allocation. This is because we will also need to save 

the "fault-free" response at the monitoring nodes so that we can determine fault criticality 

at these nodes during the fault-injected simulation runs. As is the case with the system 

outputs, a signal trace mechanism needs to be used to store the simulation responses of the 

BIT candidate nodes during the fault-free simulation pass. 

Faults will be injected within the VHDL description of the system by defining a super- 

entity which contains the original entity as an instance (Figure 3.1). The output ports of the 

original entity will be Exclusive-ORed (see discussion below) with a MASK value generated 

by the test bench (though described later, here it can be taken to mean that part of system 

p. 23 



Predecessor 
Design Entities I 

N 
P 
U 
T 

P 
O 
R 
T 

Enable I 
Mask Vector 

Data Modulator 

VHDL Design Entity 

-Behavioral Level 
-Structural Level 
-Dataflow Level 
-Abstract Level 

O 
U 
T 
P 
U 
T 

P 
O 
R 
T 

Hierarchical Entity with Error Injection Mechanism 

Successor 
Design Entities 

Figure 3.1. Fault Injection Model 

p. 24 



which generates MASK values for fault injection). Several different scenarios could occur for 

the fault injection: 

1. The MASK value is permanently fixed (based on the fault model selected for injec- 

tion) and is applied permanently to the super-entity (e.g., it is always enabled). For 

permanent stuck-at type faults, the entity output and the fixed MASK value should 

be OR'd for a stuck-at-1 or ANDed for a stuck-at-0 fault. This type of fault injection 

can be used to model board or backplane interconnect faults where a constant signal 

value may occur as a result of a fault. 

2. If the particular fault occurs in a cone of logic which feeds an output port of an entity, 

the failure is not always present. This can, again, be modeled using a fixed MASK 

value which is exclusive ORed with the entity output whenever the maskENABLE 

signal is set to one. Thus, we have the following behavior in VHDL for a fixed MASK 

value 

if(ENABLE == TRUE)  then 

Dout  <= entity_out  ' MASK; 

else 

Dout  <= entity_out; 

The intermittent nature of this type of fault is defined by the probability density 

function used for specifying the value of the ENABLE signal. Based on a user-defined 

pdf (i.e., binomial, exponential, log-normal, etc.), a random deviate can be generated 

from the pdf and be used to specify the value of the ENABLE signal. Thus, this will 

cause specific failures to be injected within the simulation at times specified by the pdf 

chosen beforehand. 

3. The mask value is variable and is recomputed during each clock cycle of the system 

simulation.   As in Scenario 2, the injection of failures in this manner makes use of 
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a probability density function. Based on the results of our experiments with various 

combinational and sequential off-the-shelf components, the number of faults occurring 

during a given simulation clock cycle have roughly a Poisson distribution. Most of 

the time, the injected fault within a component is masked and does not produce an 

error at the output. The next most frequent occurrence is for one error to occur on 

the component output. From a user-specified pdf, we can generate a random deviate 

during each clock cycle which can be used to specify the number of bit errors in an 

output bus for the "bus at wrong value" fault model. The number of errors in a bus 

must then be mapped to specific locations for each cycle. For example, suppose we 

generate a random deviate to inject two bit errors into a 4-bit output bus. The errors 

must be mapped to specific bits which can include any of the following cases (the 

following are the mask values where 1 in a bit indicates that the error is to be injected 

at that bit position), 

(a) 0011 

(b) 0101 

(c) 0110 

(d) 1001 

(e) 1010 

(f) 1100 

If no information is available about the grouping of errors (which is probably the 

nominal case), then a uniform distribution will be assumed, and each one of these six 

cases will be equally likely to occur. However, if we can make use of information from 

a co-variance matrix that is created when a gate-level fault injection of a component is 

performed, then we may know beforehand that, say, bits 2 and 3 are likely to be faulted 

together, whereby bits 0 and 1 are completely independent and are unlikely to both 
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be in error during the same clock cycle. However, in most cases, it is anticipated that 

the functionality of the entity will be specified using either a behavioral or dataflow 

description, and the structural information needed to determine the covariance of the 

outputs will not be available. 

In this scenario, the test bench must assume the responsibility of calculating the mask 

value on the fly during simulation. An alternative approach would be to generate the 

mask values and merge them with the incoming system data stimulus. 

Upon injection of a fault, the simulator will be invoked with the output responses being 

monitored and stored for later use in the criticality analysis phase. Furthermore, it is nec- 

essary to keep track of the system responses at all of the candidate BIT locations that were 

identified previously. If the system does not contain rollback or instruction retry (which 

would cause the faulty simulation to be out of step with the fault-free simulation run) then 

it may be possible to build in the BIT evaluation facility within the simulation run. A com- 

parator can be generated for each of the candidate BIT monitoring points whose function is 

to compare the value produced in the current clock cycle of the faulty simulation with the 

same cycle of data extracted from the fault-free simulation. In this manner, the fault-free 

data are essentially stored in an entity whose address is synchronized with the current clock 

cycle. If the comparator flags a mismatch between the two data streams, then it can enable 

a counter module which keeps a running total of the fault coverage at that location. The 

comparator and counters can be automatically generated by the test bench based on the 

number of bits in each monitoring point, their location, and the number of clock cycles that 

will be simulated in each pass. 

3.3.   Some Experimental Results 

In order to examine the validity of the fault model suggested, some experiments were carried 

out.   Several bus-structured MSI circuits were modeled at the gate level and subjected to 
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exhaustive single stuck-at faults using a near-exhaustive set of vectors. The cumulative 

distribution of errors at the device outputs, as well as the cumulative total of the number of 

erroneous bits was collected. The results of such an experiment are depicted in Figures 3.2 

and 3.3. 

The results obtained suggest that in absence of any other information, the fault model 

can be used in a statistical model to generate faults. The statistical parameters can be 

varied, thereby leading to the error occurrence following a defined probability distribution 

function. These faults can then be used to simulate the system. The implicit assumption in 

this case is that the system cannot be exhaustively simulated, in general, due to computer 

time constraints. From Figure 3.2 we see the number of bits that are erroneous follow the 

classical Poisson distribution. Also the errors are uniformly distributed over the output bits 

which are related (i.e., a single bus). Thus, bus-transfer errors can potentially be modeled 

using statistical properties for error injection. 

3.3.1.   Statistical Models 

As hinted, various models can be used to generate the faults for the proposed fault models, 

namely stuck-at and bus-at wrong value. Hence, supported by the experiments performed 

at RTI, there is reasonable evidence that it is better to generate errors following a statistical 

model, than random error generation not adhering to some specific statistical process. To 

this end, there is a need for the tool to provide a mechanism for incorporation of a statistical 

process for fault generation. The processes which have been identified have the Poisson 

and binomial distributions. One of these can be the default model. These two models are 

considered to be of special importance because they seem to fit most of the experimental 

data obtained during the course of this work. 
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3.4. Benefits of the Proposed Approach 

There are some distinct benefits from the proposed approach: 

• The sensitivity of the system to component failure modes can be determined quanti- 

tatively. 

• The approach is applicable to multiple levels of design abstraction. 

• The approach provides some meaningful insight into error manifestation sites in the 

system which can be used for the allocation of BIT resources to maximize their effec- 

tiveness. 

• The same methodology can be used to verify BIT effectiveness once BIT modules have 

been added to the design. 

• The effects of faults on a combined hardware/software model can be determined. 

There are some issues, however, that need to be further investigated. For example, when 

should error injection be initiated during a simulation run? This will need to be related 

to the mission times of interest and/or the life-cycle of the system. Also a provision to 

incorporate an alternative fault model needs to be provided as shown in Figure 3.4. 

3.5. Test Bench Generator 

All previous ideas can be used to make a comprehensive test bench generator. It is so called 

because this tool is responsible for deciding which faults to simulate (i.e., which tests to run) 

and also for generating the associated mask values. It will automate the generation of files 

required to perform fault injection and simulation. The test bench is the top-level design unit 

required to perform both of these functions in the proposed tool environment. Conceptually, 
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the test bench is a software implemented breadboard. As with traditional breadboards, the 

circuit components are wired together, the stimuli applied, and the responses are collected. 

All of the flexibility of the traditional breadboard is present. In addition, as with the 

case with fault injection, there is an additional facility of replacing components with their 

faulty counterparts and seeing what effect the fault or faults have on the circuit on this 

software implemented breadboard. The default model being "stuck-at-0 or 1," the faults are 

equivalent to tying the relevant nodes to ground or the supply voltage. 

As stated previously, the test bench has two distinct functions, one of automatically 

generating faults, and injecting these faults into the circuit by one of the methods which 

have already been described. The fault list can be prioritized depending on the number of 

constraints imposed by the user. The tool uses a prioritized list of faults out of which it 

picks the specified number of faults for simulation. It injects these faults, simulates them 

and finds whether they are critical or not. In case of lack of information on actual fault 

weights, one could use a probability density function (pdf) of fault arrival to generate faults 

in a statistical sense. With a user defined pdf (or default pdf if there is no user denned pdf), 

the faults are injected one by one until the number of faults exceeds a user defined number. 

There is clearly a need to separate the two functions of the test bench generator. This 

is so because both fault injection and fault simulation can be done in several ways. By 

separating these functions the user can have more choice to realize each of these functions 

in the desired way. The first function of fault list selection and fault injection can be done 

in several ways. An approach to performing these functions is described in the next section 

of this report. 

3.5.1.   The Fault Selection and Injection Test Bench 

The elements needed to configure the bench are as follows: 

p. 33 



• The entityjiame identifier provides a device name for the model. For example an 

8-bit register might have an entity name of REG8. This identifier is supplied by the 

user during the program initialization. 

• The Fault Selector to be developed will parse all the entities for the input and the 

output ports. With this information, the stuck-at model can be used to finalize the 

fault list. Also after parsing, the output will be sent to a file called parse_output. This 

file has a column for the signals, a column for the entity name the signal corresponds to, 

and a column indicating whether the signal is input or output. The function of finding 

the weights for the faults can be performed during this parsing pass. Based on our 

previous discussion, there are certain weights which can be established by parsing the 

VHDL description of the system. For example, take the case of the weight established 

using fanout of a particular signal. This will be known from the VHDL description 

which indicates how many times this signal is directly or indirectly assigned to some 

other signal. Because of the available information, this task can be handled at compile 

time. This special parsing pass is needed for developing a prioritized fault list and the 

software for that has to be developed. 

The output file for developing prioritized fault list of this process may have the format 

of Table 3.1. 

Table 3.1. Initial File Format for Fault List 

Port_name Port-type Entity Fault Weight 
Cin IN ADDER s-a-0 2 

s-a^l 1.3 
A IN MUL s-a^O 0.3 

s-a-1 4.1 
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After the required information is extracted from the user-given system description, 

there may be additional information available for the tool to use. As discussed previ- 

ously, this information may be in the form of a reliability database for the components 

which make up the system. Such information must be used to refine the fault weights 

and, in this case, the output file from the previous stage can be used as input to this 

process. This additional information is optional, and a fault list will be established 

even without it. After processing this step, the output is again a file in the same format 

as before, but with the modified entries in the weight column. At this point (assum- 

ing that the user has already specified, through the kernel, his choice for faults to be 

simulated), the fault selector can proceed to select faults from the file and present it 

to the fault injector. For example, if the user specified only two faults to be simulated, 

after selection the file may have the format of Table 3.2. 

Table 3.2. Format for Fault List in Single Fault Mode 

Fault No. PortJiarae Port-type Entity Fault 
1 A IN MUL s-a^l 

2 Cin IN ADDR s-a-1 

The Fault Injector is the test bench unit which controls the mask values, used for 

the fault injection process. Depending on the input from the fault selector, the injector 

injects the faults in the system by controlling the mask and enable values. Depending 

on the mask scenario being used (i.e., one of the three described in section 3.2), the 

fault selector injects a fault every simulation cycle and invokes the simulator. It should 

also be possible for the user to inject several faults in a batch mode. The easiest way 

to do that would be to point out whether the fault injector should run in the Single 

Fault or the Multiple Fault mode. This can be enquired by the kernel, and if the user 

selects the latter, the kernel should prompt the user to indicate which faults should be 
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considered. This can be done by showing the fault list to the user and allowing faults 

to be selected together by clicking on them in a window. Continuing with our example, 

if the user chose to consider both the faults simultaneously, the file available for fault 

injection might be formatted as shown in Table 3.3. 

Table 3.3. Format for Fault List in Multiple Fault Mode 

Fault No. Port_name Port-type Entity Fault 
1 A IN MUL s-a^l 

Cin IN ADDR s-a^l 

• The test cases are the set of input combinations for which a designer might want to 

test the design under consideration. The simulation time, or what is also referred as 

simulation cycle in this report, depends on the number of test cases run. After this set 

of inputs has been exercised, the tool will inject the next fault in the list, and so forth 

until the chosen fault list is exhausted. 

3.5.2.   The Fault Simulation Bench 

Under this section, the issues related to the simulation are taken up. With the typical test 

cases and the fault from the fault injector, the simulation test bench runs the simulation. 

It is possible that the user has only a few test cases for which he has already simulated the 

system and stored the response of the system. Alternatively, the user may want to change 

the test case for each simulation. Depending on which of these the user chooses, at the very 

outset of fault injection the user must specify whether the system should do the simulation 

for both the faulty and fault-free system in each simulation cycle or should just simulate 

the faulty system and compare the response with the stored responses. Obviously, with the 

stored responses there will be a saving in both time and effort. It also means that the user 

loses the flexibility to change the simulation inputs in each simulation cycle. That is not a 
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very big constraint in most situations because the designer has knowledge of the test patterns 

beforehand. 

• The simulator is a VHDL simulator which can take the VHDL description (augmented 

with superentities) and proceed with the simulation. A commercially-available VHDL 

simulator can be used in this case. Before passing the circuit netlist to the simulator, 

those I/O signals which are specified as stuck-at by the mask values must be suitably 

modified. 

• The good model output signals transfer the reference signals for the comparator 

to compare against. As already explained, these are the outputs of the superentities 

which the tool has constructed around the entities but no mask is applied, meaning 

that their values come out unchanged. These signals can be bits or buses, but in both 

cases the comparisons are performed at the bit level. 

• The faulty model input-output signals are the results of the simulation with the 

injected faults in the model and are the other input to the comparator. There can 

be two modes of simulation: the faults can be injected one at a time, or as a group 

where a parameter fault-number specifies the number of faults injected. A fault type 

file would be created at runtime that would specify fault number and the type of fault 

injected. 

• The comparator output signals convey the result of individual comparison oper- 

ations. These signals can be used to determine whether the injected fault is critical 

or not. Criticality issues and how the comparison should be performed along certain 

guidelines is elaborated upon in the next chapter. 
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4.   CRITICALITY ANALYSIS 

4.1.   Determination of Fault-Effect Criticality 

Upon fault injection and simulation, the comparison will be made between the outputs of 

the faulty and the fault-free system under consideration. However, it is up to the user to 

define a quantitative threshold for fault effects beyond which a fault is deemed to be a 

mission-critical fault. Furthermore, the user will define when the comparisons take place 

during the fault injection process (i.e., after every clock cycle during simulation, or at the 

end of a simulation task). An assumption may be that the fault-free and faulty responses 

are compared every simulation step, however, other requirements may be imposed according 

to the system designer's view of the system function. For example, if the design under 

consideration is a FFT processor, the requirement may be to determine criticality based 

on the amount of error introduced by an injected fault in the final output only and not 

necessarily in intermediate results. This implies that the determination of criticality is made 

at the time of the comparison of system response at times specified by the user. 

Figure 4.1 shows the basic methodology which incorporates the various phases for per- 

forming quantitative FMEA, including the criticality evaluation phase. It is assumed that 

the system simulation is complete and results are available and stored before comparisons 

are made to determine the criticality of an output. This is the default mode assumed for 

any system. 

The criticality evaluation phase occurs after the simulation. Its inputs are the criticality 

specifications from the user and the simulation output from the simulation tool (fault-free 

output and system output in presence of injected faults). 
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4.2.   Methods for Criticality Analysis 

Traditionally, the methods used for criticality analysis have not used simulation and have 

relied more on the usage of reliability models. These models require the user to define 

the criticality threshold for a component, system, subsystem, or a failure mode. Then the 

tool (using a database containing failure rates of components and failure modes) explores 

the interactions among the components from a topological point of view. Its output is 

traditionally described as the criticality number, and is indicative of the criticality of the 

failure mode in question. The disadvantage of this approach is that the model uses a great 

deal of data that are subjectively input by the user, and therefore the results are heavily 

skewed by the subjective judgement of the user. 

In the simulation approach, the user specifies the failure to be injected and also the 

threshold for the criticality in terms of the quantity of error introduced by the injected 

failure, and the tool decides whether the failure manifests itself as critical to the system 

function. As described in the last chapter, the fault injection can be automated so that a 

representative fault set can be input. In most cases, the designer may be assumed to have a 

good idea of the types of faults that the system needs to be subjected to. 

These two approaches are depicted in Figure 4.2. Also shown are the input requirements 

for each method. The traditional FMEA concept requires the knowledge of failure rates of 

various components (or VHDL entities in the simulation approach). The failure rates may 

have to be associated with a particular failure mode (i.e., for each type of failure of the 

system, the probability of that failure needs to be known). Obviously, this can be difficult 

for a large number of components. Still more difficult to know are the modification factors, 

such as the environmental modification factor (Ke discussed later in Section 4.6). Being 

unable to determine these probabilities, the user might be forced to inject some probabilities 

based on estimates that may not reflect the behavior of a component in a statistical sense. 
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In the simulation approach, a vehicle such as VHDL or any other structure specifying 

tool is needed as a vehicle for simulation. The VHDL model is the preferred one for such a 

tool, and this is the model which can be used to inject the faults and simulate the system. 

What is meant by quantized user specification will be further elaborated below. 

CRIT1CALITY ANALYSIS 

FMEA - CONCEPT SIMULATION 

FAILURE RATES 

FAILURE MODES 

MODIFICATION FACTORS 

SIMULATION 
VEHICLE 
(VHDL) 

GENERAL 
MODEL 

QUANTIZED USER 
SPECIFICATIONS 

Figure 4.2. Criticality Analysis Methods 

4.3.   Quantized Specifications 

The simulation of the system, including failures injected, produces results which have to 

be compared to user-defined criticality thresholds to determine if the injected failures are 

critical for the system mission.   This comparison needs to be done with some guidelines 
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given by the user as to how the tool should determine whether a fault is critical or not. 

A technique needs to be developed that gives maximum flexibility to the user regarding 

how the criticality data may be specified. Criticality is manifested at the outputs of a 

system, subsystem, or component. Also, the criticality specifications depend on the type 

of system at hand. The term quantized specifications means that, with the help of system 

attributes, the user can completely instruct the tool as to what constitutes criticality for a 

given system mission. Figure 4.3 illustrates an example of attributes that may be used to 

perform criticality analysis. The aims in defining these attributes will be: 

• To unambiguously define the system operational characteristics and the way they may 

affect the determination of criticality. The system characteristics to be considered may 

be synchronous or asynchronous operation, inclusion of rollback capability, etc. 

• Define how the the comparison of the fault-free and faulty system response will be 

implemented. The comparison between the faulty response and the fault-free response 

might be done per clock cycle or every nth clock cycle where n is specified by the user. 

Another possibility is that the comparison is performed using the RMS value of the 

output for a user-specified number of cycles. 

• Capture the diversity in the specifications by the users. The presence of transients 

and the like have to be incorporated as fields before being used to determine critical 

behavior. 

Before the criticality tool proceeds to determine the failure effects, it must account for 

the type of components used in the system and the type of signals it is handling, in order 

to produce meaningful results concerning the criticality of the injected failures according to 

user requirements. 
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4.4.   System Attributes Needed for Performing Criticality Anal- 
ysis 

This section provides a discussion on some of the attributes which the criticality tool will 

need before it proceeds with the analysis. Since the objective is to produce a tool that is 

general, there are a lot of attributes to be considered to take as many systems as possible 

in consideration. Normally all these attributes will not be needed and will be set to their 

default values. 

The concept to be considered first is that of sampling period. It is an important parameter 

because this period determines where the comparison will take place between the normal 

expected data and the data returned by the simulator under fault injection. It must be 

noted, that this comparison determines whether the injected faults have been critical to the 

system or not at the end of a specified sampling period. By default, this period will be set 

to the clock cycle for synchronous systems, and at end-of-event simulations for asynchronous 

ones. 

+ I I I I I I 
Figure 4.4. Sampling Period Can Vary 

If TRANSIENTS (events that occur out of synchronization with the system clock to 

which all other transitions are synchronized) are to be taken into account (i.e., if the 

output can be critical due to the transients) then the sampling period may need to be 
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decreased by the specified amount. By specifying this attribute the user decreases the 

sampling period to capture transients that may occur in short time intervals. Figure 

4.4 shows how an otherwise smooth signal might have transients. On the right, the 

sampling period is shown to be larger because the user expected the signal to be 

smooth. On the other hand, if a transient was expected, the user might decrease the 

sampling period (as on the right of the axis) to examine the system fault effect at the 

time of the transient. 

The system can have the default value of the sampling frequency, but only in the case 

of SYNCHRONOUS systems. Otherwise the sampling frequency must be specified. 

Even in the case of synchronous system sampling frequency may have to be specified. 

One way to specify the sampling frequency, in the case of asynchronous systems, can be 

to tie it with a particular output. For example, in a system implementing a handshake 

protocol, the user might want the outputs to be compared when the acceptance from 

the remote party arrives. 

At the beginning of the process, the user could define which outputs need to be con- 

sidered for criticality evaluation, and the aspects of how to measure criticality at a 

given output. This provides the user the capability to consider internal system nodes 

(in addition to input and output nodes) as well. 

If the user is interested in examining an output taken singly or an output combination 

(e.g., sum of two outputs), the COMBINATION OF OUTPUTS needs to be 

specified. 

Since an output might never be critical, or it might manifest itself as critical after a 

long latency, or it might be known to be critical, a field to keep track of these three 

possibilities is needed. 

A field is also needed to indicate whether the system has ROLLBACK points, or 
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not. This attribute will help the faulty and fault-free simulation to stay in step. This 

means that for systems that have a built-in, fault-checking mechanism; if the system 

rollbacks upon detecting an injected fault, fault simulation will keep in step with the 

rollback, and normal expected value and faulty values will be compared only if the 

fault checking mechanism approves of the rollback values and the system is ready to 

move to the next stage. Note here that a complete simulation model is assumed, which 

gives the tool access to the flag which determines whether the system is to be rolled 

back or not. This implies is that the tool has access to both the external system and 

the internal system nodes. 

• The user has to specify the TOLERANCE (i.e., margins of error) acceptable before 

the output becomes critical. Here arises the issue of whether the user might be inter- 

ested in the average value, per sample value, or the RMS value of the output to be 

monitored. Depending on the user requirements, the tolerance needs to be appropri- 

ately defined. 

• The NORMAL value to be used as a basis for specifying the tolerance must also be 

specified. Normally this is the value obtained from the fault-free simulation. 

• Degree of criticality. There might be a need to warn the user of the effect of a 

particular fault if it produces an error that is within a specified margin of the normal 

value and to declare it critical if it exceeds that margin. 

So we have a final picture of the needed attributes in Figure 4.5. 

4.5.   Attribute Association 

An issue that needs to be addressed is how all these attributes are combined to form a 

comprehensive database. Some of the attributes, such as the system being synchronous or 

asynchronous, are derived from the system description. Other attributes, such as whether to 
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Figure 4.5. Attributes to be Specified for Criticality Analysis 
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consider the combination of outputs for criticality evaluation, can be neither associated with 

any of the components, nor with the system. Others, such as tolerance, are associated with 

individual signals. The degree of criticality is also associated with individual signals and it 

seems reasonable to associate the system attributes with the signals itself. In this case, the 

user may have to identify signal values of which the system will need to keep a record. These 

are the signal values the system will trace through the simulation. 

After marking out signals of interest, the user needs to attach to these signals the attribute 

values that are characteristic of the system and the mission. Not doing so would lead to the 

use of default values. These default values may be tabulated as shown in Table 4.1. 

Table 4.1. Default Values for Signal Attributes 
Attribute Default Value 

Synchronous/Asynchronous Synchronous 
Sampling Period Global Clock Cycle 
Combination of Output Individual Signals 
Rollback Present NO 
Degree of Criticality No Warnings 

So the conclusion is that the attributes be attached with the signals. They can derive 

the relevant attributes such as synchronous or asynchronous from the components, of which 

they are a part. 

4.6.   How Simulation Output Can Contribute to Theoretical Eval- 
uation 

In the FMECA (Failure Modes and Effects Criticality Analysis) procedure, all the steps for 

FMEA are performed. In addition, criticality analysis is also performed. Criticality analysis 

is done by combining the occurrence of failure modes and the determination of the impact of 

a failure mode on the reliability of the system. As discussed before, there exists the concept 

of the criticality number which characterizes the failure effects on a system function using a 
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number of parameters which are often difficult to determine for real systems. In traditional 

FMECA analyses, subjective assignments are made to the values of unknown probabilities. 

In the FMEA literature [78, 79, 82], the criticality number is defined as: 

f2a*ß*i*T*Ka*Ke 

where, 

A = Fraction of total failure rate attributable to each failure mode. 

ß = Conditional prob, that if failure mode occurs then the critical failure will occur. 

7 = Generic failure rate for item (known). 

i = Specified failure mode. 

n = Total number of failure modes for component. 

Ka and Ke are environmental failure rate modification factors and T is the operating 

time. 

The values of A, ß and 7 are evaluated from the data typically available from the field. If 

such data are unavailable, the analyst provides the missing values based on experience. Thus, 

a great deal of subjectivity is introduced in the determination of the criticality number. The 

proposed tool can reduce such subjectivity by providing the ß values for various components. 

Since the tool simulates the failure modes and finds whether those failure modes are critical, 

determination of ß for a given failure mode becomes a deterministic computation, which can 

be used for FMECA analysis. 

4.7.   Summary 

This section charts the steps involved during the criticality detection phase.   An overall 

picture of this phase is presented in Figure 4.6. After defining which signals are to be traced 
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by the tool, the user lets the simulation run. As the simulation progresses, the results are 

continually stored for future comparison by the criticality detector. The sampling period 

attribute helps the tool decide what results are to be stored, and when. The preferred 

scenario would be that the simulator continues to work for the duration of the sampling 

period, at the end of which it stops and stores the results. The same procedure is carried 

out both for the faulty and the fault-free systems. 

The results are stored in two logfiles. One logfile is used to store the result of the faulty 

simulation, and the other for fault-free case. The format for such a file can be of the form 

shown in Tables 4.2, 4.3. 

Table 4.2. File Format for Fault-Free System Logfile 

Time     signal 1      signal 2      signal 3      signal 4+5 
10ns 2 3 1 .5 

20ns 2.5 3.2 1 .5 

30ns 2 3 1 .5 

40ns 2 3 0 .9 

Table 4.3. File Format for Faulty System Logfiles 
Time     signal 1      signal 2      signal 3      signal 4+5 
10ns 2 3.2 1.1 .5 

20ns 2.5 3.2 1.0 .4 

30ns 2 3.2 1.1 .6 

40ns 1 2.2 1.1 .5 

As shown in the tables, the logfiles chart the progression of values on the specified nodes 

as a function of the time. The values placed in the files are governed again by the attributes 

the user specified for the criticality phase. For example, they might be RMS values or, as 

shown in the tables, one of the columns might be a combination of signals rather than being 
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just a single signal. These logfiles can be updated after each simulation cycle, and later 

these values can be fed to the comparator which determines if and when the fault became 

critical. If the tool is operating in one step mode (i.e., stopping after each simulation cycle 

to determine whether the fault is critical or not), then as soon as the criticality is detected, 

the fault can be flagged. As an example from above tables, at 40ns the sum of signals 4 and 

5 is 0.5 in the faulty circuit and 0.9 in the fault-free one. This might constitute a critical 

error. Still the tool may go on to finish the total simulation and do all the comparisons at the 

end, when it will find that first critical error occurred at 40ns. Alternatively, the simulator 

may be set to abort at the first instance of the critical error (one step). In one step, the 

comparison is carried out every simulation cycle. 
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5.   BIT EVALUATION 

The BIT evaluation tool will help the designer assess the efficacy of the BIT resources to 

meet system requirement. This will be done by determining the number of critical faults 

that the BIT detects. In Section 4.7, the concept of logfiles for storing the system response 

under faulty and fault-free conditions was introduced. This concept can be extended to BIT 

evaluation. 

5.1.   BIT Evaluation Approach 

Since a complete VHDL model is input to the simulator, when the criticality detector detects 

a critical fault, the proposed tool can pinpoint both the nature and the location of the fault 

because the tool itself injected the fault. The objective of BIT assessment is to determine 

whether the fault is detected by any of the BIT schemes being used. This task will be 

performed by the BIT evaluation facility. After the simulation of each fault, the status of 

all BIT points together with the internal simulation data is stored, and then checked to see 

whether the BIT was able to detect the injected fault. So while simulation is in progress, an 

extra logfile needs to be maintained. This logfile captures the changes in BIT points as the 

critical errors are identified. 

After a simulation pass concludes, or upon first detection of criticality of a fault, the 

values of the error counters keeping track of the BIT monitoring points can be added to 

one of two global counters. These two global counters will keep a cumulative tally of the 

error counts for the faults deemed critical, and for those that are found to be non-critical. 

After all of the target faults have been injected and simulated, the global counters can be 

used to assess the candidate BIT schemes in terms of their "efficiency" in detecting the 

faults deemed mission-critical. The non-critical faults have their own set of error counters 

which may provide useful information to the designer about the testability of the design and 
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provide feedback as to where test-points may be placed for non-BIT tests. A logfile associated 

with the BIT monitoring points might be of the type shown in Table 5.1. This file may be 

constructed simultaneously with the other logfiles, which record the values of specified signal 

points. When the signal values are written in those files, the simulator updates the status 

of the BIT points. If any of the BIT points have a valid flag a 1 is kept in the corresponding 

point in the array to depict that the BIT in that point has been able to detect the error. 

Table 5.1. File Format for BIT Logfiles 

BIT_POINTl BIT.POINT2 BIT.POINT3 BIT_POINT4 
Faultl 1 0 0 0 
Fault2 0 1 0 1 
Fault3 0 1 0 0 
Fault4 0 0 0 0 

As can be seen from the table, all the faults except fault 4 are detectable at one or 

more of the BIT points. This implies that the used BIT scheme is not sufficient to detect 

all the errors due to the injected faults. However, it might be the case that the criticality 

detector finds that fault 4 was not critical according to the user's requirements. Then the 

system depicted above detects all the mission-critical faults (if any of the other faults are 

critical). Similarly, from the same table we see that if the fault set is limited to these 4 faults, 

then BIT_POINT 3 is redundant, because it does not detect any of the injected faults, and 

therefore it may be removed. Such tradeoffs can be explored after all the information has 

been gleaned and formatted for the criticality detector (comparator). 

At this point, it is assumed that the critical errors have been identified, and a log of 

those errors has been kept during the simulation phase. While the simulation was being 

performed, a record was kept indicating where the critical errors occurred and whether they 

were detected by the BIT structures which were specified in the design. This can be thought 

of keeping a table of critical errors which has three entries in it: 
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• The injected fault, which resulted in a critical error. 

• The value of the critical error. 

• The BIT resource that detected the error. 

It is possible that no BIT resource was able to detect a critical error. In that case, a new 

BIT resource has to be allocated if it is desired to detect all mission-critical failures (i.e., as 

in the case of INEWS system). 

It must be understood that the recommendation here is to intertwine this step with the 

other phases because all the ground work for this phase is done during the simulation and 

the criticality analysis phase. It is during the simulation that all the data are collected to be 

collated afterwards. It is during the criticality analysis phase that the logfiles are generated. 

These logfiles are the ones on which the BIT evaluation phase will act and generate the 

measure of the efficacy of the BIT. It must be noted that, until now, only one measure of the 

efficacy of the BIT has been discussed, namely its capability to detect all the mission-critical 

resources. There can be other tradeoffs the designer might like the tool to evaluate. These 

will also be discussed here. 

The structure suggested is shown in Figure 5.1. 

5.2.   BIT Measures 

The initial impetus for the development of BIT techniques was to reduce the testing difficul- 

ties encountered during component production screening. As designs become more complex, 

with high logic to I/O ratios, the economic benefits of self-test become accentuated at both 

the chip and system levels. Although system-level, built-in self-test appears to be a promis- 

ing solution to chip testing and system diagnosis problems, it is not without its drawbacks. 

Four primary disadvantages include: 
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1. Additional I/O pins and hardware overhead required. 

2. Decreased reliability may be possible due to increased number of components in the 

design. 

3. Negative performance impact due to additional circuitry (i.e., path delays through 

BIST components). 

4. Additional design time and cost. 

An obvious system design goal is to minimize the negative impact of BIST while max- 

imizing its performance benefits. Traditionally, BIST approaches are evaluated with strict 

regards to the additional area overhead required to achieve a specified level of fault cover- 

age. Because low area overhead is naturally preferred, the use of complex BIST techniques is 

generally restricted due to area minimization concerns. Since built-in self-testing approaches 

are being developed for the system level, this suggests the use of system-level performance 

metrics, in addition to the simple area overhead and fault coverage measures. The empha- 

sis must be to have performance measures which capture the effects of BIST strategies on 

both system performance and reliability. By assessing the composite BIST enhanced system, 

optimization of the tradeoffs involved in a system design can be performed. 

Test time is simply the time required to apply test patterns to a device under test. 

For general systems, test time will be a function of several parameters including: number of 

test patterns (test length), system complexity, and system test application frequency. Fault 

coverage refers to the number of faults detected compared to the number of faults assumed. 

The dependence of fault coverage on test length for random [56] and pseudorandom patterns 

[56,57] has been explored in the literature, using both heuristic and algorithmic methods. 

Area overhead is a measure of the hardware cost of a BIST scheme. The BIST hardware 

overhead is generally expressed as a percentage. For an integrated circuit, the area overhead 
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is the percentage of silicon area occupied by the BIST circuitry compared to the total die 

area. Since device yield decrease with increasing die area, a small percentage overhead is 

preferable. 

Measures appropriate for the evaluation of fault-tolerant systems include reliability, per- 

formance or reward, area utilization and cumulative reward. The reliability R(t) of a 

system is defined as: "the conditional probability that the system has survived the interval 

[0,t], given that it was operational at time t=0." This metric reflects the operational or 

mission lifetime of a system, and is inherently a function of the reliabilities of the system's 

components and their interconnect. Another performance measure of a system is what is 

referred to as reward, as in [80]. The definition of this metric is not unique; it is generally 

chosen to be the quantity that most adequately describes the performance of the system. For 

example, reward for a multiprocessor system may be chosen to be its computation capacity 

(e.g, instructions per second) as defined in [58]. 

Area utilization [59] accounts for additional hardware overhead (e.g., BIST circuitry) 

required by the system to implement its fault-tolerant features. 

Prior to gracefully degrading systems, reliability measures and performance measures 

were evaluated separately from each other. However, with the advent of gracefully degrad- 

ing systems, combined performance-related reliability measures have emerged [58]. It has 

since been suggested that the prior separate measures do not adequately describe gracefully 

degradable systems [60,61]. Consequently, other measures combining performance and reli- 

ability aspects have evolved and are termed "performability" measures. One such measure 

is referred to as cumulative reward. It is a function of time, and represents the total accu- 

mulated performance of a system over a given interval. Mathematically, cumulative reward 

is the integral of the instantaneous reward function. This measure is significant in that it 

provides additional information regarding the performance of a system. However, status con- 

cerning the completion of a job requiring the execution of N instructions, that was started at 
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time t, cannot be determined from the instantaneous reward function. However, cumulative 

reward reveals this information by providing the total accumulated number of instructions 

the system has executed from the time it began operation (t = 0) until time t. 

In order to include the benefits of the cumulative reward measure, a new metric to 

quantify BIST system overhead, called cumulative area utilization, is proposed. This measure 

is defined as: 

cumulative area utilization = -jj 

where, 

CR = Cumulative Reward 

TA = Total Area 

Thus, cumulative area utilization represents a more informative area measure analogous 

to cumulative reward, providing a more discerning performance measure. 

Another metric that serves to unite self-testing and fault tolerant system performance 

measures is fault coverage. There are several types of fault coverage, depending on whether 

the designer is concerned with fault detection, fault location, fault containment, or fault 

recovery [83]. System fault coverage may be defined simply [62] as the percentage of all 

possible faults from which a system can recover. Thus, coverage probability is defined as the 

probability that a system recovers successfully, given that a fault has occurred. Coverage 

has been shown to be a sensative parameter of system performance measures [62,63]. The 

coverage probability mainly depends on the fault coverage of the testing technique [59]. 

Thus, system coverage provides a critical link between the testing strategies of the BIST 

techniques, and the performance levels of a fault-tolerant system. 

Based on the above brief discussion, it may be suggested that apart from the aspect of 

fault coverage (which was addressed by the first model presented in this chapter, Figure 5.1) 

there may be a need to evaluate the BIT resources from other angles as well. In Figure 5.1, it 
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is suggested that the tool should keep count of both the critical and non-critical errors. This 

is tantamount to tracing the fault coverage of the BIT resources inserted by the designer. 

That is why fault coverage is the only performance metric being employed in this default 

model. Efforts to use other performance measures, such as area utilization, would invariably 

need the description of the system, including for example, the number of extra pins, extra 

hardware, etc. So, in Figure 5.2 the possibility of the existence of such a model is indicated. 

One such model should be provided as a default (D in Figure 5.2), and the flexibility should 

be given to the user to interface an application specific model for BIT evaluation, if desired 

(M in Figure 5.2). The default model is proposed to have the metrics like cumulative area 

utilization, as suggested above. Also, if the user is using standard cell library, then a close 

estimate of hardware overhead can be incorporated. In that case, even the delays introduced 

by the BIT circuitry can be used to evaluate the reward parameter. Many such models 

already exist and can readily replace the default model. 

Next, we look at techniques that help the designer plan his BIT resources. 

5.3.   Recommended BIT Insertion Techniques 

In addition to the proposed BIT evaluation scheme , some representative ways of inserting 

BIT in hardware are now described. These may be built in the BIT evaluation tool to help 

the designer insert effective BIT for detecting mission-critical faults. 

5.3.1.   Survey of Automatic BIT Insertion Techniques 

Several systems for automatic DFT have been reported in the literature. Of these, the two 

most relevant systems are briefly reviewed here. The first system is the Testable Design 

Expert System, or TDES [64]. The basic strategy of the system is to find a suitable DFT 

(Design For Test) scheme for each part of a circuit. These DFT schemes are called Testable 

Design Methodologies (TDMs).  Examples of TDMs are Scan-Path, LSSD (Level Sensitive 
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Scan Design), BILBO (Built-in Logic Block Observer), and several methods for testable 

design of PLAs (Programmable Logic Arrays). This system first partitions the circuit into 

several parts called "kernels." Then, an applicable TDM is sought for each kernel using a 

matching process. In the matching process, the I-path concept is used. An I-path is a path 

through which data can be transferred without any change. This I-path is used for identifying 

possible registers and paths for test pattern generation and response evaluation. If more than 

one TDM is applicable to a kernel, then TDM measures are used to choose between them. 

TDM measures are estimates of the costs associated with using a TDM. Frames are used for 

representing knowledge about TDMs. The TDES system has been implemented in LISP. A 

high level view of the configuration of this system is shown in Figure 5.3. 

Another system proposed by Jones and Baker [66] uses AI techniques, including a rule- 

based system and planning, for high-level BIST design. This system relies heavily on BILBO- 

based BIST implementation. Insertion of BILBO is guided by constraints on hardware over- 

head and testing time, which are specified by the designer. The basic strategy employed 

by the system is to insert an appropriate number of BILBOs so that the given constraints 

on hardware overhead and testing time are satisfied. The system presents a range of test 

plans which meet the constraints imposed by the designer and achieve a balance between 

area penalty and test time. Each plan satisfies the constraints in different ways. From 

the set of possible test plans, the designer can select a suitable one that best matches the 

original design considerations. This system has been developed using the LOOPS [66] multi- 

paradigm programming environment which supports object-oriented, rule-based, procedural 

and access-oriented programming. 

Although different AI techniques are used in the implementation of these two systems, 

there are some similarities between the two. First, both systems consider the insertion of 

BIT hardware at the register transfer level. Second, random pattern testing, based on the 

BILBO architecture, is used for the testing of Combinational Logic Blocks (CLBs). Third, 
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BILBO insertion is performed locally, rather than globally, in both systems. Neither of the 

two systems uses VHDL in the input description of the hardware. Since it has already been 

stated that VHDL is the preferred vehicle for modeling a design, it will be required to insert 

BIT resources in the VHDL model. 

5.3.1.1.    Tasks for Automatic Insertion of BIST Hardware 

Many of the ideas used in the two systems described above can also be used in the proposed 

tool. However, a major difference is the use of VHDL. Given a VHDL description of a design, 

the structure of the design is extracted first. Then the tool should allocate testing resources 

such as Pseudo Random Pattern Generators (PRPGs) and Multiple Input Signature Regis- 

ters (MISRs), to test CLBs in the design. Resource allocation may be followed by a scan-path 

organization. A scan-path can be used to collect signatures and to test sequential logic in the 

design. Upon finalizing a recommendation for test resource allocation, a test session for each 

CLB (combinational logic block) is scheduled, and control signals for distinguishing between 

several functional modes are distributed to the multi-functional registers in the design. In 

the following paragraphs, each of these tasks will be described in some detail. 

To insert BIST circuitry into a design, the structure of the design needs to be extracted 

from the description of the hardware and represented internally in a usable database. There- 

fore, the first task performed should be the transition of VHDL description into a structural 

description. 

Consider the case where a CLB is tested using BILBOs. A structural configuration, 

PRPG -> CLB -> MISR, should be constructed (the symbol -> implies an I-path between 

two entities). Here PRPG is the acronym for Pseudo Random Pattern Generators and MISR 

is an acronym for Multiple Input Signature Register. Since PRPGs and MISRs can be con- 

figured from existing registers, any available resource from the original design should be used. 

However, there may not be registers available which can form the required configuration, i.e., 
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Register -> CLB -> Register. In this case, it may be necessary to add extra registers to the 

original design. Therefore, the second task of AIBH (Automatic Insertion of BIT Hardware) 

is the allocation of existing registers to act as PRPGs and MISRs for testing CLBs and 

indicating where hardware must be added to perform PRPG and MISR tasks that meet the 

test specifications for design. 

This task may be followed by the formation of scan path that can facilitate the testing 

of sequential logic. In its simplest form, a scan path at a chip I/O can be used to facilitate 

a structural testing technique at the board level, namely boundary scan. This becomes 

significantly important due to the existence of standards that support a test interface and a 

bus protocol, most notably IEEE 1149.1. 

The next task is test scheduling. Test scheduling is an arrangement of testing sessions so 

the total testing time can be minimized, given the fixed allocation of PRPGs and MISRs. 

The final task of AIBH is the distribution of register control signals. Since registers are 

used in several functional modes, control signals are needed for the proper configuration of 

registers in each test session. 

In summary, the core tasks of AIBH should be the following: 

1. Translation of VHDL description into structural information. 

2. Allocation of PRPG and MISR for the chosen CLBs in a design. 

3. Scan-path organization. 

4. Test scheduling. 

5. Distribution of register control signals. 

In order to accomplish these tasks, the input description of a design must provide all of 

the necessary information. Details of a specific implementation of above mentioned concepts 

can be found in [65]. 
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5.4.   Tracing Critical Faults 

Given a VHDL model of a hardware design of the system, it is easy for a parser to extract 

the relationship between various signals in the system. The motivation to do so arises from 

the fact that after identifying a critical fault, the designer may be interested in knowing how 

the faulty signal fans out to the modules driven by it. Also, tracing this signal back to other 

signals might be helpful for the designer. 
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Figure 5.4. Tracing a Critical Fault 

Figure 5.4 shows a system with eight modules. In this design example, the interconnec- 
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tions of various modules by different signals is shown with dotted arrows. Also shown is a 

critical fault that has been detected at the node marked by an X in a circle. The fanout 

from this point has been shown with the help of solid lines, so that it is obvious that the 

critical error can have an effect on a number of components. This is the effect the designer 

may want to be aware of. The parser can determine the fanout from the VHDL model and 

indicate to the designer (upon request) the modules affected by the occurrence of a critical 

fault that may be detected at any point in the circuit. 

To generate fault diagnostics (used in tracing the error), many AI-based systems exist 

using rules. Each rule specifies a symptom and fault pair [69,70,71,72]. Such rules are 

created for each design. Given a set of symptoms, these rules give a set of possible faults for 

a particular design. As the complexity of system design increases, the rule-based approach 

becomes impractical [73,74]. Some modifications of these algorithms have been suggested to 

improve efficiency [75]. Some AI based algorithms for fault diagnosis use the stuck-at-fault 

model [70]. 

None of the above systems is able to perform fault diagnostics on VHDL descriptions of 

the system. In [67], a VHDL Fault Diagnosis Tool (VFDT) is described. 
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6.   TOOLS 

When laying down the guidelines for the implementation of the proposed tool set, an effort 

is made to identify some existing tools to perform required functions. Such existing tools, if 

incorporated in the proposed framework for the tool set, can lead to great savings in time 

and effort needed to implement the tool set. 

In the previous chapters, a functional description of various tools were presented within 

the context of Quantitative FMEA (QFMEA). Here, issues regarding the implementation of 

various tools are discussed. The proposed tool set consists of tools implementing different 

functions in the QFMEA concept such as fault injection, simulation, criticality analysis, and 

BIT evaluation. Existing tools that can be used to perform one or more of these tasks include 

VHDL simulators, which exist in the market, e.g., [68]. Similarly, there have been efforts to 

design a system which performs fault diagnosis and simulation of systems whose architecture 

has been described in VHDL [67]. This system uses a VHDL simulator (VSIM), which uses 

a discrete-event-based compiled code simulation algorithm. To generate fault diagnostics 

(used in tracing the error), many Al-based systems exist using rules. Some of these tools 

can be directly incorporated in the proposed tool set and others can be used as models for 

implementation. The emphasis is on modifying the existing tools to fit into the framework 

of the proposed tool set. In general, the requirements for pre-existing tools to fit in are: 

• The tool should have good performance in terms of reasonable runtime and functional 

correctness of the results it produces. 

• The tool should fit in the overall structure.   This means that it should be easy to 

interface it with other parts. 

Tool functions which cannot be implemented with existing tools have to be developed as 

new tools. Also, software has to be developed to interface between the tools, and between 

the kernel and the various tools. 
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Various tools recommended to be included in the tool set are mentioned below: 

• The Kernel. 

• The VHDL Simulator. 

• Fault Injector. 

• Criticality Detector. 

• BIT Evaluation Tool. 

• Online Help and Tutorial. 

• Enhancements and Options, User Interface Manual. 

The detailed description of tools starts with the kernel which, as described is the frame- 

work where all the different subtasks take place, is the mode of communication between the 

user and the tool. 

6.1.   The Kernel 

The kernel is the basic user interface and a common bus through which various parts of 

the tool set can communicate. The interface between the designer and the kernel can be 

implemented as a GUI (Graphical User Interface). Figure 6.1 shows one such example in 

which the GUI handles various phases of design cycle together with the proposed tool set. A 

GUI customized to meet the requirements of this tool will offer best performance, but a great 

saving in time and effort can be realized by modifying an existing GUI. The Design Manager 

tool, which is a part of the Falcon Framework by Mentor Graphics, is recommended as a 

vehicle for the GUI implementation. The Falcon Framework also offers some other distinct 

advantages: 
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• The Falcon Framework provides a user interface language AMPLE [76]. With the help 

of this facility, it is easy to interface various tools with the GUI provided by the Falcon 

Framework. 

• Since the proposed tool set will be used as part of a design cycle, which may be depicted 

as in Figure 6.2, the proposed framework should be able to support other tools (such 

as schematic editor, simulation and synthesis tool etc.), in addition to QFMEA tool 

set. This requirement is also fulfilled by the Falcon Framework. 

GUI 

Text 
Editor 

Fault 
Injector 

Simulator 

Criticality 
Detector 

BIT 
Evaluation 

Fault 
Simulation 

Layout Help 
Hypertext 
Manuals 

Logic 
Synthesis 

NOTE: All the functions needed for the system development 

are handled by the same GUI interface. 

Figure 6.1. Graphical Interface Incorporating the Proposed Tool Set in the Design Cycle 
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An integrated tool set is recommended because it allows the process of identifying mission- 

critical faults, and designing BIT capable of detecting these faults, to be viewed by the 

designer as part of the overall design process. 

The Falcon Framework also features a number of tools that can be used to provide some 

of the data neeeded to perform the required QFMEA functions. Such tools are the VHDL 

simulator (System 1076), the design capture (Design Architect), and the model databases 

supporting these tools (e.g., VHDL models from Logic Modeling Corporation). 

6.2.   Queries 

This section describes the information which the user should pass to the tool set through 

the GUI (recommended above). The designer has to specify some inputs in addition to a 

VHDL model. He should be able to specify these inputs (discussed below) interactively with 

the help of the GUI. However, for a large system it might be preferable to place such inputs 

in files which the system can read. These additional inputs are described next. 

Along with the VHDL description the designer should provide various system attributes 

to be used by the Criticality Detection tool (Section 4.4). Since an output signal can be 

tested for criticality based on various parameters (such as RMS value or average value) 

and outputs can have different characteristics (such as synchronous or asynchronous), these 

attribute specifications must be made by the user. This will help the system to store the 

required values in the required format while the simulation is in progress. The attributes 

are listed below: 

• Sampling period (i.e., the basic unit of simulation time). 

• If individual outputs, or a combination of outputs is to be traced for criticality. 

• Whether the system has rollback points or not. 
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• Whether the system needs to trace only critical faults according to the criticality 

criterion, or trace all faults. 

• Whether the system is synchronous or asynchronous. 

• Tolerance value before a fault effect becomes critical. 

In addition to the attribute specification, the tool set may need to know whether the user 

wishes to provide specifications interactively or through the default files. 

A list of recommended queries which the designer needs to resolve are listed in Table 6.1. 

Table 6.1. Recommended Set of Queries 

Query User chooses from Description 
Outputs Outputs to be monitored The user specifies outputs to be traced 
Tolerance Tolerance value per output User states what is critical 
Tolerance Mode RMS or average or default Default is per sample 
Synchronous Yes or No If yes, clock period is sampling period 
Sampling Period sampling period Simulator knows when to store results 
Output Combination Output combination If combination of outputs to be traced 
Rollback Present Yes or No If rollback, tool defines sampling period 
Warning Yes or No Warnings flagged or not 
Simulator Options As described - 
Abort Abort or continue Abort at instance of first critical error 

It is possible that conflicts and/or omissions might exist between various user specifi- 

cations. Such conflicts have to be reported back to the user. Some examples of potential 

conflicts are listed below: 

• Conflict 1: If the user defines that rollback is present in the system and fails to 

define the "rollback point" (i.e., a bit that flags when the simulation of the system 

rolls back). If such a bit or an equivalent mechanism is not present, the tool has no 

means of keeping the faulty and fault-free simulation values in synchronization while 

comparing them. 
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• Conflict 2: Another conflict might arise if the user defines a signal as synchronous 

but fails to specify the signal (typically the clock signal) with which it is synchronous. 

The default can be the global clock for all such signals (provided the clock is specified 

by the user). 

• Conflict 3: If the user wants a specified output or a combination to be traced on the 

basis of RMS or average value but fails to specify the time interval over which such 

operations are to be carried out. 

• Conflict 4: If the tool is to flag warnings, then it needs to know what range of 

error values constitutes critical system behavior and what range should be flagged as a 

warning (i.e., depending on whether the warnings are to be flagged or not, the format 

of tolerance will be different). Failure to specify the values in the right format will lead 

to a conflict being reported. 

The above set of queries were related mostly to the criticality analysis. An additional 

set of queries is related to the fault injection operation. The tool should provide the user 

with various options regarding which faults to simulate. These options should include as a 

minimum: 

• The user can let the tool access the reliability and component failure database, and 

determine a fault list to be simulated, based on a selection procedure to be developed. 

• The user may explicitly specify the faults (corresponding to the fault model being used) 

to be simulated. 

• The user may use a statistical generation and mapping of faults, by specifying distri- 

butions of fault occurrence for the different components or the system. 

• A combination of the above alternatives. 
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In any case, the user has to specify the number of faults, num^faults, that need to be 

simulated. 

There are also queries relating to BIT evaluation. The system designer needs to specify 

BIT allocation points, which are the points at which the designer intends to insert BIT into 

the system. These BIT points are defined in the VHDL model of the design, along with a 

functional model of the BIT technique used to monitor these points. The user in this case 

has to indicate: 

• The explicit location of the BIT allocation points. 

• How the BIT resources allocated at these points detect and report the faults. 

Indication of the BIT point can be done in the VHDL code. The resulting VHDL code 

should be compatible with standard VHDL. So the indication can be done inside the VHDL 

comments if needed. The VHDL parser can, thus, identify the BIT points and the tool can 

allocate a global BIT counter for each of the BIT monitoring points. Such counters keep 

track of the faults which are detected at a corresponding BIT allocation point. With the 

help of these counters, a detectability table (also described earlier, in Chapter 5) can be 

constructed by the BIT evaluation tool. An issue that needs to be resolved is; how a BIT 

resource (inserted in VHDL code by the user) will communicate to the tool that a fault has 

been detected. Again, this difficulty can be surmounted by letting the user decide what 

constitutes detection of a fault (which varies with the BIT strategy employed). When such a 

condition occurs, the user specifies (in the VHDL code inside the comments) BIT-flag <= 1. 

The tool can interpret this as a sign that an injected error has been detected. For example, 

suppose the original VHDL code is the following: 

architecture  rtl  of  shflO  is 

signal pre_Q   :   qsim_state_vector(9  downto  0)   :=   (OTHERS  =>   'X'); 
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begin 

SHIFT_REGISTER_Process:  process(CLK) 

begin 

if  (CLK'event  and  (CLK =   '1')   and  (CLK'last_value =  '0'))  then 

if  (LD =   '1')  then 

pre_Q <= DIN; 

elsif   (SE =   '1')  then 

pre_Q(9)   <=   '0'; 

pre_Q(8 downto  0)   <= pre_Q(9  downto  1); 

end  if; 

end if; 

end process SHIFT_REGISTER_Process; 

DOUT <= pre_Q; 

end rtl; 

} 

If LD = '1' corresponds to the detection of a fault, the code which the user should input 

is: 

architecture rtl of shflO is 

signal pre.Q : qsim_state_vector(9 downto 0) := (OTHERS => 'X'); 

begin 

SHIFT_REGISTER_Process: process(CLK) 

begin 

if (CLK'event and (CLK = '1') and (CLK'last.value = '0')) then 

if (LD = '1') then —** BIT_flag <= 1; 

pre_Q <= DIN; 

elsif (SE = '!>)  then 
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pre_Q(9)   <=   'O'j 

pre_Q(8 downto 0)  <= pre_Q(9 downto  1); 

end if; 

end if; 

end process SHIFT_REGISTER_Process; 

DGUT  <= pre_Q; 

end rtl; 

This code assumes that '**' after '-' for comments is used to hide information in these 

comments. These are the comments the tool looks for when defining the Global counters for 

BIT evaluation. 

Presence of BIST resources can also be indicated in any of the following manners: 

• An executable statement that calls a logging routine that, itself, turns logging on and 

off. 

• An executable statement that is easily commented out when not needed. In this 

strategy, there may be a need to recompile and edit the code each time the designer 

wants to turn the BIST mechanism on or off. 

All this queries can be conveniently incorporated in the Design Manager software in the 

Mentor Falcon Framework so these functions can be easily implemented; this is another 

advantage of using a standard GUI. 

6.3.   Simulator 

After the VHDL code describing the design has been compiled, the fault injection takes 

place and this design is simulated for determining the criticality of fault effects based on 

the observed error quantities.   Both the compilation and simulation can be performed by 
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tools provided as a part of the Falcon Framework. Compilation of code can be performed by 

hdl, the VHDL compiler. QuickSimll [77] can be used to do the required simulation. The 

design can be captured, in this case, using Design Architect. QuickSimll works with the 

Design manager and offers a number of capabilities and options that can be very useful for 

the purpose of the proposed tool set. 

• Timing Mode of simulation can be minimum, maximum, or typical among others. This 

facility provides greater flexibility to the system designer. 

• Constraint Mode can be off or on for messages. As already mentioned, this is a recom- 

mended feature in the proposed tool set (i.e., the ability to flag not only the critical 

faults but also the potentially critical faults based on the designer's need). 

• Delay Model can be inertial or transport (the two methods defined in VHDL). This 

lets the designer create a VHDL model which better suits his need. 

Since this system supports the standard VHDL (i.e., System 1076) as well as Mentor 

VHDL, the user has a greater choice of module libraries and components. Tracing, listing 

and viewing individual signals, viewing the progression of signal values over time, running 

the simulation and providing stimulus are easily done in the framework of QuickSimll. 

It must be noted, that recommending the use of the Design Manager tool and the Quick- 

Simll has been made with interfacing capabilities in mind. Mentor Graphics provides user 

interface functions for all of its higher-end tools such as QuickSimll and Design Manager. 

These are part of the AMPLE [76] procedure calls. With the help of these calls, the user is 

able to suitably modify the interfaces and build applications around these tools. As men- 

tioned earlier one of our objectives was that the interface for the usable tools be modifiable 

to fit the needs of QFMEA tool set. 

The simulator has to interface both with the kernel and with the fault injection tool. 

Interface with the fault injector is needed because the fault injector identifies the fault to be 

p. 78 



simulated, generates the appropriate mask value in the "superentity model," and calls the 

simulator. This function cannot be performed with a fault simulator resident in the Falcon 

Framework. 

6.4.   Fault Injector 

Fault Injection 

Parser Mask Generator Injection 

VHDL Model DataBases User Simulator 

Figure 6.3. Parts in Fault Injector 

The fault injection module (Figure 6.3) determines which faults, out of the defined fault 

population, should be simulated, based on the user-specified selection approach as discussed 

previously. This tool has to interface with the component reliability database and examine 

the structure of the design to select a subset of the fault population. The software to be 

developed for the Fault Injector should have the following components: 

• Parser: To parse the VHDL entities and generate the masked entities called superen- 

tities. 

p. 79 



• Mask Generator: Controls the mask values depending on the selected faults from the 

total fault set. This is the module which interfaces with the reliability database and 

the user to weigh the faults and, thus, form a prioritized subset of faults. 

• Injector: A function which calls the simulator with the mask appropriate for the fault 

to be simulated. 

Fault injection requires that each of the VHDL entities used in the original design be 

expanded into the superentities. These superentities are the original entities with a mask 

around them. This mask is useful to regulate the values at the output or input of these 

entities. If the stuck-at fault model is used, then temporary or permanent faults can be 

generated. This process will be handled by the fault injector, which needs to be developed. 

All these parts of the fault injector have to be developed and should be compatible with 

the Mentor Graphics tools that have been recommended. 

6.5.   Criticality Detector 

The purpose of this stage is to determine whether the responses of the faulty system, which 

have been collected during fault injection, are critical or not. In a typical scenario, the 

designer provides a sequence of inputs to the simulated system. The response of the fault- 

free system to this sequence is then recorded by the tool. Thereafter, the faults chosen are 

injected and the response of the faulty system is also stored for a comparison. At the end of 

the run (i.e., when all the faults have been simulated), the criticality detector is evoked. 

The criticality detector (Figure 6.4) is a comparator which uses the files corresponding to 

the faulty and fault-free responses and compares the corresponding entries. Such a simplistic 

view for this stage can be afforded, provided all groundwork involved in the queries which 

let the simulator store the response data in a convenient format for comparison has been 

completed correctly. 
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The comparison needs to be done only for the outputs which have been identified pre- 

viously (as a part of the query stage). The responses are stored only for such nodes. The 

comparison takes into account the tolerances which have been specified by the user, records 

whether the fault is critical or not, and in which interval or sampling period the fault became 

critical. Such a record is kept in logfiles which serve two purposes: 

• To inform the user of the time instances when critical errors occurred. 

• For BIT evaluation, which is discussed next. 

Since all the results of simulation are being retrieved in this stage, some work related 

to BIT evaluation can be completed. Whenever a critical fault is identified, all the global 

counters associated with the BIT monitoring points, where BIT resource are located, are 

checked to determine if the fault has been detected. The status of all global BIT counters is 

updated each time a critical fault is identified. 

6.6.   BIT Evaluation Tool 

All the data needed for the BIT Evaluation Tool are collected in the criticality detection 

phase. The function performed at this stage is to use these data and make decisions about 

the efficacy of BIT resources in the system. 

The methodology for this phase has been elaborated in the chapter on BIST evaluation. 

For this level, all the software has to be developed. This tool will read the logfiles mentioned 

above and the values of the global counters, and will collate these responses. The purpose 

of doing this is to create a table in the format shown in Table 6.2. 

This table is a summary of the activity at the monitoring points where BIT resources 

are allocated, and also a report of how effective these points and their associated BIT re- 

sources have been in detecting mission-critical faults. This table is used as a feedback to the 
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Table 6.2. File Format for BIT Logfiles 
BIT_POINTl      BIT.POINT2     BIT_POINT3      BIT_POINT4 

Faultl 1 0 0 0 

Fault 2 0 1 0 1 

Fault3 0 1 0 0 

Fault4 0 0 0 0 

designer, to inform him of the effectiveness of the BIT resources employed. This task is rel- 

atively simple in terms of software development. However, since a subset of faults and fault 

combinations will likely be used for a complex design, the BIT assessment has to use some 

statistical post-processing of the data to produce confidence levels for the BIT effectiveness 

resulted from a chosen fault injection experiment. 

6.7.   Online Help and Tutorial 

While designing a system, simulating it, injecting faults, or for that matter in any other 

design activity, the user may need help with different facets of the tools. A help facility is 

recommended for the tool set and it can be arranged in several levels. 

6.7.1.   Level 1 

In previous paragraphs, the Falcon Framework was proposed to be used as a basis for de- 

veloping the kernel. The proposal to use the Falcon Framework as the overall framework in 

which the QFMEA tool set takes into consideration the ability to use the resident help facil- 

ity, which can be easily accessed at any point as the user interacts with the framework. This 

help facility should be augmented to provide online help for the QFMEA tool set. The help 

can be organized in different ways. At the very outset (i.e., when the designer presents his 

VHDL design to the QFMEA tool), the designer must be able to look at the tool summary 

and functions.   This is the first level of the help function, and should necessarily be kept 
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simple. This level is for a novice user of the tool, and should serve the following functions: 

• Introduction to the tool set as a whole. 

• Introduction to the tool structure. 

• Introduction to the individual tools, their functions, and recommended sequence of 

use. 

6.7.1.1.   Tutorial 

At the first level, the user should be able to go through a brief tutorial, which will illustrate, 

through an example, how the tool works. A relatively simple system can be selected to 

illustrate the functioning of the proposed tool set. As a first step, mission requirements 

should be clarified. The user is then notified of the fault model being used and the possible 

fault set for the chosen system. Then, a preset database is used to show the user how the tool 

selects faults for injection. Also, the user must be made to realize how those outputs whose 

criticality is to be examined can be chosen, and how to specify criticality requirements for 

those outputs. The tool then proceeds to simulate a user-defined set of faults or the faults 

injected by the tools, and shows which are found to be critical. 

After identifying these mission-critical faults, the tutorial should point out to the user 

how the BIT resources perform versus the specifications. Poor BIT performance can be 

highlighted by identifying some mission-critical faults which the BIT resources have not 

been able to detect. At this point, one iteration of the use of QFMEA tool may be complete 

and the next starts after the tool shows a possible modification of the BIT resources and 

goes through the cycle again, which results in a better BIT performance. 
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6.7.2.   Level 2 

The second level of help is the actual online help when the user is actually using the tool. 

At all points in a tool session, the user must have help available, so this level is distributed 

over individual tools in the tool set. At all times, the tool keeps track of what the user is 

doing and provides relevant help. This level is incorporated in the Falcon Framework and 

can be expanded to include help on various features of the QFMEA tool set. 

6.8.   Enhancements and Options, User Interface Manual 

Throughout this report, it has been pointed out that the user might be inclined to use 

features different from the ones provided by default. The main example can be that of the 

fault model being used by the tool. Although the stuck-at model seems to be the most 

convenient choice, and is the one recommended for this tool, the user may prefer to use an 

alternative model. Also, there may be enhancements over the default models which the user 

may want to incorporate in the tool. The idea being emphasized here is that of flexibility 

of the tool. The tool developer must define the interfaces to all tools and produce a user 

interface manual. 

Wherever alternate options are allowed, a comprehensive way of realizing those options 

must be provided to be used by either the user or a third party. In any case, the user 

interface manual must list and explain all the submodules that can help a user in enhancing 

the capabilities of the tool, and modifying them to tailor his needs. Also, in this manual 

all the known bugs of the designed system, the error messages and corresponding remedies 

must be listed. 
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